Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 11: 1193177, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37485325

RESUMO

Dogs (Canis familiaris) prefer the walk at lower speeds and the more economical trot at speeds ranging from 0.5 Fr up to 3 Fr. Important works have helped to understand these gaits at the levels of the center of mass, joint mechanics, and muscular control. However, less is known about the global dynamics for limbs and if these are gait or breed-specific. For walk and trot, we analyzed dogs' global dynamics, based on motion capture and single leg kinetic data, recorded from treadmill locomotion of French Bulldog (N = 4), Whippet (N = 5), Malinois (N = 4), and Beagle (N = 5). Dogs' pelvic and thoracic axial leg functions combined compliance with leg lengthening. Thoracic limbs were stiffer than the pelvic limbs and absorbed energy in the scapulothoracic joint. Dogs' ground reaction forces (GRF) formed two virtual pivot points (VPP) during walk and trot each. One emerged for the thoracic (fore) limbs (VPPTL) and is roughly located above and caudally to the scapulothoracic joint. The second is located roughly above and cranially to the hip joint (VPPPL). The positions of VPPs and the patterns of the limbs' axial and tangential projections of the GRF were gaits but not always breeds-related. When they existed, breed-related changes were mainly exposed by the French Bulldog. During trot, positions of the VPPs tended to be closer to the hip joint or the scapulothoracic joint, and variability between and within breeds lessened compared to walk. In some dogs, VPPPL was located below the pelvis during trot. Further analyses revealed that leg length and not breed may better explain differences in the vertical position of VPPTL or the horizontal position of VPPPL. The vertical position of VPPPL was only influenced by gait, while the horizontal position of VPPTL was not breed or gait-related. Accordingly, torque profiles in the scapulothoracic joint were likely between breeds while hip torque profiles were size-related. In dogs, gait and leg length are likely the main VPPs positions' predictors. Thus, variations of VPP positions may follow a reduction of limb work. Stability issues need to be addressed in further studies.

2.
Br J Psychol ; 114 Suppl 1: 14-16, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36722652
3.
Sci Rep ; 12(1): 15901, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36151454

RESUMO

Small cursorial birds display remarkable walking skills and can negotiate complex and unstructured terrains with ease. The neuromechanical control strategies necessary to adapt to these challenging terrains are still not well understood. Here, we analyzed the 2D- and 3D pelvic and leg kinematic strategies employed by the common quail to negotiate visible steps (upwards and downwards) of about 10%, and 50% of their leg length. We used biplanar fluoroscopy to accurately describe joint positions in three dimensions and performed semi-automatic landmark localization using deep learning. Quails negotiated the vertical obstacles without major problems and rapidly regained steady-state locomotion. When coping with step upwards, the quail mostly adapted the trailing limb to permit the leading leg to step on the elevated substrate similarly as it did during level locomotion. When negotiated steps downwards, both legs showed significant adaptations. For those small and moderate step heights that did not induce aerial running, the quail kept the kinematic pattern of the distal joints largely unchanged during uneven locomotion, and most changes occurred in proximal joints. The hip regulated leg length, while the distal joints maintained the spring-damped limb patterns. However, to negotiate the largest visible steps, more dramatic kinematic alterations were observed. There all joints contributed to leg lengthening/shortening in the trailing leg, and both the trailing and leading legs stepped more vertically and less abducted. In addition, locomotion speed was decreased. We hypothesize a shift from a dynamic walking program to more goal-directed motions that might be focused on maximizing safety.


Assuntos
Codorniz , Corrida , Adaptação Psicológica , Animais , Fenômenos Biomecânicos , Marcha , Locomoção , Caminhada
4.
Front Vet Sci ; 8: 709966, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34513974

RESUMO

Lumbosacral vertebral motion is thought to be a factor in the development of degenerative lumbosacral stenosis in German shepherd dogs. So far, few studies exist describing natural canine lumbosacral movement in vivo. Therefore, this investigation aims to achieve a detailed in vivo analysis of bone movement of the lumbosacral region to gain a better understanding of the origin of degenerative lumbosacral stenosis using three-dimensional non-invasive in vivo analysis of canine pelvic and caudal lumbar motion (at L6 and L7). Biplanar cineradiography of the pelvis and caudal lumbar spine of four clinically sound German shepherd dogs at a walk and at a trot on a treadmill was recorded. Pelvic and intervertebral motion was virtually reconstructed and analyzed with scientific rotoscoping. The use of this technique made possible non-invasive measurement of physiological vertebral motion in dogs with high accuracy. Furthermore, the gait patterns of the dogs revealed a wide variation both between individual steps and between dogs. Pelvic motion showed a common basic pattern throughout the stride cycle. Motion at L6 and L7, except for sagittal rotation at a trot, was largely asynchronous with the stride cycle. Intervertebral motion in all dogs was small with approximately 2-3° rotation and translations of approximately 1-2 mm. The predominant motion of the pelvis was axial rotation at a walk, whereas lateral rotation was predominant at a trot. L7 showed a predominance of sagittal rotation (with up to 5.1° at a trot), whereas lateral rotation was the main component of the movement at L6 (about 2.3° in both gaits). During trotting, a coupling of various motions was detected: axial rotation of L7 and the pelvis was inverse and was coupled with craniocaudal translation of L7. In addition, a certain degree of compensation of abnormal pelvic movements during walking and trotting by the caudal lumbar spine was evident.

5.
Front Vet Sci ; 8: 709967, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34490400

RESUMO

All vertebrate species have a distinct morphology and movement pattern, which reflect the adaption of the animal to its habitat. Yet, our knowledge of motion patterns of the craniocervical junction of dogs is very limited. The aim of this prospective study is to perform a detailed analysis and description of three-dimensional craniocervical motion during locomotion in clinically sound Chihuahuas and Labrador retrievers. This study presents the first in vivo recorded motions of the craniocervical junction of clinically sound Chihuahuas (n = 8) and clinically sound Labrador retrievers (n = 3) using biplanar fluoroscopy. Scientific rotoscoping was used to reconstruct three-dimensional kinematics during locomotion. The same basic motion patterns were found in Chihuahuas and Labrador retrievers during walking. Sagittal, lateral, and axial rotation could be observed in both the atlantoaxial and the atlantooccipital joints during head motion and locomotion. Lateral and axial rotation occurred as a coupled motion pattern. The amplitudes of axial and lateral rotation of the total upper cervical motion and the atlantoaxial joint were higher in Labrador retrievers than in Chihuahuas. The range of motion (ROM) maxima were 20°, 26°, and 24° in the sagittal, lateral, and axial planes, respectively, of the atlantoaxial joint. ROM maxima of 30°, 16°, and 18° in the sagittal, lateral, and axial planes, respectively, were found at the atlantooccipital joint. The average absolute sagittal rotation of the atlas was slightly higher in Chihuahuas (between 9.1 ± 6.8° and 18.7 ± 9.9°) as compared with that of Labrador retrievers (between 5.7 ± 4.6° and 14.5 ± 2.6°), which corresponds to the more acute angle of the atlas in Chihuahuas. Individual differences for example, varying in amplitude or time of occurrence are reported.

6.
Res Vet Sci ; 140: 69-78, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34411999

RESUMO

Maneuverability is of paramount importance for many animals, e.g., in predator-prey interactions. Despite this fact, quadrupedal limb behavior in complicated maneuvers like simultaneous jumping and turning are not well studied. Twenty adult sport Border Collies were recorded while jumping over an obstacle and simultaneously turning. Kinetic and kinematic data were captured in synchrony using eight force plates and sixteen infrared cameras. These dogs were familiar with the task through regular participation in the dog sport agility. The experiments revealed that during landing, higher lateral forces acting in the forelimbs compared to hindlimbs. During landing, the outer limbs produced about twice the inner limbs' force in both vertical and lateral directions, showing their dominant contribution to turning. Advanced dogs showed significantly higher lateral impulse and stronger inner-outer limb asymmetry regarding lateral impulses than beginner dogs, leading to significantly stronger turning for advanced dogs. Somewhat unexpected, skill effects rarely explained global limb dynamics, indicating that landing a turn jump is a constrained motion. Constrained motions leave little space for individual techniques suggesting that the results can be generalized to quadrupedal turn jumps in other animals.


Assuntos
Membro Anterior , Esportes , Animais , Fenômenos Biomecânicos , Cães , Membro Posterior , Cinética
7.
Sci Rep ; 11(1): 11335, 2021 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-34059703

RESUMO

The domestic dog is interesting to investigate because of the wide range of body size, body mass, and physique in the many breeds. In the last several years, the number of clinical and biomechanical studies on dog locomotion has increased. However, the relationship between body structure and joint load during locomotion, as well as between joint load and degenerative diseases of the locomotor system (e.g. dysplasia), are not sufficiently understood. Collecting this data through in vivo measurements/records of joint forces and loads on deep/small muscles is complex, invasive, and sometimes unethical. The use of detailed musculoskeletal models may help fill the knowledge gap. We describe here the methods we used to create a detailed musculoskeletal model with 84 degrees of freedom and 134 muscles. Our model has three key-features: three-dimensionality, scalability, and modularity. We tested the validity of the model by identifying forelimb muscle synergies of a walking Beagle. We used inverse dynamics and static optimization to estimate muscle activations based on experimental data. We identified three muscle synergy groups by using hierarchical clustering. The activation patterns predicted from the model exhibit good agreement with experimental data for most of the forelimb muscles. We expect that our model will speed up the analysis of how body size, physique, agility, and disease influence neuronal control and joint loading in dog locomotion.

8.
BMC Vet Res ; 17(1): 76, 2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33579272

RESUMO

BACKGROUND: French bulldogs exhibit significantly larger femoral external rotation and abduction than other breeds. We were curious as to whether this peculiar leg kinematic affects patellar motion and/or might induce medial patellar subluxation (MPSL) or medial patellar permanent luxation (MPPL). We hypothesized that the more abducted leg posture during stance causes an unusual medial pull direction of the rectus femoris muscle during stance, and that this may facilitate the occurrence of MPSL or even MPPL during locomotion. To test our hypothesis, we analyzed existing stifle-joint X-ray-sequences collected during the treadmill walk and trot of seven adult female French bulldogs. We estimated 3D-patellar kinematics using Scientific Rotoscoping. RESULTS: The three-dimensional motion of the patella comprises rotations and translations. From the seven dogs analyzed, three exhibited MPSL and one MPPL during the gait cycle. Medial patellar luxation (MPL) occurred mostly around toe-off in both gaits studied. Patellar position was generally not gait-related at the analyzed timepoints. In dogs with MPL, the patella was placed significantly more distally (p = 0.037) at touch-down (TD) and at midswing (p = 0.024), and significantly more medial at midswing (p = 0.045) compared to dogs without MPL. CONCLUSIONS: Medial patellar luxation seems to be the consequence of the far from parasagittal position of the stifle joint during stance due to a broad trunk, and a wide pelvis. This peculiar leg orientation leads to a medial sideway pull caused by the rectus femoris muscle and the quadriceps femoris and may initiate plastic deformation of the growing femur and tibia. Thus, a way to avoid MPL could be to control breeding by selecting dogs with lean bodies and narrow pelvis. Actual breeding control programs based on the orthopedic examination are susceptible to errors. Systematic errors arise from the fact that the grading system is highly dependent on the dog's condition and the veterinarians' ability to perform the palpation on the stifle. Based on our results, the position of the patella at TD, or even perhaps during stand might offer a possibility of an objective radioscopic diagnostic of the MPL.


Assuntos
Cães/lesões , Luxação Patelar/veterinária , Joelho de Quadrúpedes/lesões , Animais , Fenômenos Biomecânicos , Cães/anatomia & histologia , Feminino , Marcha , Patela/anatomia & histologia , Patela/diagnóstico por imagem , Luxação Patelar/diagnóstico por imagem , Radiografia , Especificidade da Espécie , Joelho de Quadrúpedes/diagnóstico por imagem
9.
J Exp Biol ; 223(Pt 7)2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32098886

RESUMO

A considerable body of work has examined the dynamics of different dog gaits, but there are no studies that have focused on limb dynamics in jumping. Jumping is an essential part of dog agility, a dog sport in which handlers direct their dogs through an obstacle course in a limited time. We hypothesized that limb parameters like limb length and stiffness indicate the skill level of dogs. We analyzed global limb parameters in jumping for 10 advanced and 10 beginner dogs. In experiments, we collected 3D kinematics and ground reaction forces during dog jumping at high forward speeds. Our results revealed general strategies of limb control in jumping and highlighted differences between advanced and beginner dogs. In take-off, the spatially leading forelimb was 75% (P<0.001) stiffer than the trailing forelimb. In landing, the trailing forelimb was 14% stiffer (P<0.001) than the leading forelimb. This indicates a strut-like action of the forelimbs to achieve jumping height in take-off and to transfer vertical velocity into horizontal velocity in landing (with switching roles of the forelimbs). During landing, the more (24%) compliant forelimbs of beginner dogs (P=0.005) resulted in 17% (P=0.017) higher limb compression during the stance phase. This was associated with a larger amount of eccentric muscle contraction, which might in turn explain the soft tissue injuries that frequently occur in the shoulder region of beginner dogs. For all limbs, limb length at toe-off was greater for advanced dogs. Hence, limb length and stiffness might be used as objective measures of skill.


Assuntos
Membro Anterior , Esportes , Animais , Fenômenos Biomecânicos , Cães , Marcha , Membro Posterior , Locomoção , Extremidade Superior
10.
Biomimetics (Basel) ; 4(1)2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31105206

RESUMO

This work demonstrates a neuromechanical model of rat hindlimb locomotion undergoing nominal walking with perturbations. In the animal, two types of responses to perturbations are observed: resetting and non-resetting deletions. This suggests that the animal locomotor system contains a memory-like organization. To model this phenomenon, we built a synthetic nervous system that uses separate rhythm generator and pattern formation layers to activate antagonistic muscle pairs about each joint in the sagittal plane. Our model replicates the resetting and non-resetting deletions observed in the animal. In addition, in the intact (i.e., fully afferented) rat walking simulation, we observe slower recovery after perturbation, which is different from the deafferented animal experiment. These results demonstrate that our model is a biologically feasible description of some of the neural circuits in the mammalian spinal cord that control locomotion, and the difference between our simulation and fictive motion shows the importance of sensory feedback on motor output. This model also demonstrates how the pattern formation network can activate muscle synergies in a coordinated way to produce stable walking, which motivates the use of more complex synergies activating more muscles in the legs for three-dimensional limb motion.

11.
Nature ; 565(7739): 351-355, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30651613

RESUMO

Reconstructing the locomotion of extinct vertebrates offers insights into their palaeobiology and helps to conceptualize major transitions in vertebrate evolution1-4. However, estimating the locomotor behaviour of a fossil species remains a challenge because of the limited information preserved and the lack of a direct correspondence between form and function5,6. The evolution of advanced locomotion on land-that is, locomotion that is more erect, balanced and mechanically power-saving than is assumed of anamniote early tetrapods-has previously been linked to the terrestrialization and diversification of amniote lineages7. To our knowledge, no reconstructions of the locomotor characteristics of stem amniotes based on multiple quantitative methods have previously been attempted: previous methods have relied on anatomical features alone, ambiguous locomotor information preserved in ichnofossils or unspecific modelling of locomotor dynamics. Here we quantitatively examine plausible gaits of the stem amniote Orobates pabsti, a species that is known from a complete body fossil preserved in association with trackways8. We reconstruct likely gaits that match the footprints, and investigate whether Orobates exhibited locomotor characteristics that have previously been linked to the diversification of crown amniotes. Our integrative methodology uses constraints derived from biomechanically relevant metrics, which also apply to extant tetrapods. The framework uses in vivo assessment of locomotor mechanics in four extant species to guide an anatomically informed kinematic simulation of Orobates, as well as dynamic simulations and robotics to filter the parameter space for plausible gaits. The approach was validated using two extant species that have different morphologies, gaits and footprints. Our metrics indicate that Orobates exhibited more advanced locomotion than has previously been assumed for earlier tetrapods7,9, which suggests that advanced terrestrial locomotion preceded the diversification of crown amniotes. We provide an accompanying website for the exploration of the filters that constrain our simulations, which will allow revision of our approach using new data, assumptions or methods.


Assuntos
Fósseis , Locomoção , Filogenia , Vertebrados/fisiologia , Jacarés e Crocodilos/anatomia & histologia , Jacarés e Crocodilos/fisiologia , Animais , Tamanho Corporal , Feminino , Iguanas/anatomia & histologia , Iguanas/fisiologia , Urodelos/anatomia & histologia , Urodelos/fisiologia , Vertebrados/anatomia & histologia
12.
Sci Rep ; 8(1): 16982, 2018 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-30451855

RESUMO

The first high-precision 3D in vivo hindlimb kinematic data to be recorded in normal dogs of four different breeds (Beagle, French bulldog, Malinois, Whippet) using biplanar, high-frequency fluoroscopy combined with a 3D optoelectric system followed by a markerless XROMM analysis (Scientific Rotoscoping, SR or 3D-2D registration process) reveal a) 3D hindlimb kinematics to an unprecedented degree of precision and b) substantial limitations to the use of skin marker-based data. We expected hindlimb kinematics to differ in relation to body shape. But, a comparison of the four breeds sets the French bulldog aside from the others in terms of trajectories in the frontal plane (abduction/adduction) and long axis rotation of the femur. French bulldogs translate extensive femoral long axis rotation (>30°) into a strong lateral displacement and rotations about the craniocaudal (roll) and the distal-proximal (yaw) axes of the pelvis in order to compensate for a highly abducted hindlimb position from the beginning of stance. We assume that breeds which exhibit unusual kinematics, especially high femoral abduction, might be susceptible to a higher long-term loading of the cruciate ligaments.


Assuntos
Fenômenos Biomecânicos , Fluoroscopia/métodos , Marcha , Membro Posterior/fisiologia , Animais , Cães , Imageamento Tridimensional , Especificidade da Espécie
13.
J Anat ; 2018 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-29920671

RESUMO

The whole-organ, three-dimensional microstructure of murine Achilles tendon entheses was visualized with micro-computed tomography (microCT). Contrast-enhancement was achieved either by staining with phosphotungstic acid (PTA) or by a combination of cell-maceration, demineralization and critical-point drying with low tube voltages and propagation-based phase-contrast (fibrous structure scan). By PTA-staining, X-ray absorption of the enthesial soft tissues became sufficiently high to segment the tendon and measure cross-sectional areas along its course. With the fibrous structure scans, three-dimensional visualizations of the collagen fiber networks of complete entheses were obtained. The characteristic tissues of entheses were identified in the volume data. The tendon proper was marked as a segment manually. The fibers within the tendon were marked by thresholding. Tendon and fiber cross-sectional areas were measured. The measurements were compared between individuals and protocols for contrast-enhancement, using a spatial reference system within the three-dimensional enthesis. The usefulness of the method for investigations of the fibrous structure of collagenous tissues is demonstrated.

14.
J Eukaryot Microbiol ; 65(5): 600-611, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29377516

RESUMO

Endosymbiotic interactions are frequently found in nature, especially in the group of protists. Even though many endosymbioses have been studied in detail, little is known about the mechanistic origins and physiological prerequisites of endosymbiont establishment. A logical step towards the development of endocytobiotic associations is evading digestion and escaping from the host's food vacuoles. Surface properties of bacteria are probably involved in these processes. Therefore, we chemically modified the surface of a transformant strain of Escherichia coli prior to feeding to Tetrahymena pyriformis. N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide allows any substance carrying amino- or carboxyl groups to be bound covalently to the bacterial surface by forming a peptide bond, thus, altering its properties biochemically and biophysically in a predictable manner. The effect of different traits on digestion of T. pyriformis was examined by fluorescence and transmission electron microscopy. The efficiency of digestion differs considerably depending on the coupled substances. Alkaline substances inhibit digestion partially, resulting in incomplete digestion and slightly enhanced escape rates. Increasing hydrophobicity leads to much higher escape frequencies. Both results point to possible mechanisms employed by pathogenic bacteria or potential endosymbionts in evading digestion and transmission to the host's cytoplasm.


Assuntos
Escherichia coli/química , Tetrahymena pyriformis/fisiologia , Vacúolos/microbiologia , Escherichia coli/ultraestrutura , Microscopia Eletrônica de Transmissão , Fagossomos/microbiologia , Propriedades de Superfície , Simbiose , Tetrahymena pyriformis/microbiologia , Tetrahymena pyriformis/ultraestrutura , Vacúolos/ultraestrutura
15.
BMC Evol Biol ; 17(1): 251, 2017 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-29237396

RESUMO

BACKGROUND: The increase in locomotor and metabolic performance during mammalian evolution was accompanied by the limitation of the number of cervical vertebrae to only seven. In turn, nuchal muscles underwent a reorganization while forelimb muscles expanded into the neck region. As variation in the cervical spine is low, the variation in the arrangement of the neck muscles and their attachment sites (i.e., the variability of the neck's musculoskeletal organization) is thus proposed to be an important source of neck disparity across mammals. Anatomical network analysis provides a novel framework to study the organization of the anatomical arrangement, or connectivity pattern, of the bones and muscles that constitute the mammalian neck in an evolutionary context. RESULTS: Neck organization in mammals is characterized by a combination of conserved and highly variable network properties. We uncovered a conserved regionalization of the musculoskeletal organization of the neck into upper, mid and lower cervical modules. In contrast, there is a varying degree of complexity or specialization and of the integration of the pectoral elements. The musculoskeletal organization of the monotreme neck is distinctively different from that of therian mammals. CONCLUSIONS: Our findings reveal that the limited number of vertebrae in the mammalian neck does not result in a low musculoskeletal disparity when examined in an evolutionary context. However, this disparity evolved late in mammalian history in parallel with the radiation of certain lineages (e.g., cetartiodactyls, xenarthrans). Disparity is further facilitated by the enhanced incorporation of forelimb muscles into the neck and their variability in attachment sites.


Assuntos
Evolução Biológica , Mamíferos/anatomia & histologia , Sistema Musculoesquelético/anatomia & histologia , Pescoço/anatomia & histologia , Animais , Humanos , Fenótipo , Filogenia , Especificidade da Espécie , Fatores de Tempo
16.
Ann Anat ; 214: 53-62, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28865771

RESUMO

The temporomandibular joint (TMJ) conducts and restrains masticatory movements between the mammalian cranium and the mandible. Through this functional integration, TMJ morphology in wild mammals is strongly correlated with diet, resulting in a wide range of TMJ variations. However, in artificially selected and closely related domestic dogs, dietary specialisations between breeds can be ruled out as a diversifying factor although they display an enormous variation in TMJ morphology. This raises the question of the origin of this variation. Here we hypothesise that, even in the face of reduced functional demands, TMJ shape in dogs can be predicted by skull form; i.e. that the TMJ is still highly integrated in the dog skull. If true, TMJ variation in the dog would be a plain by-product of the enormous cranial variation in dogs and its genetic causes. We addressed this hypothesis using geometric morphometry on a data set of 214 dog and 60 wolf skulls. We digitized 53 three-dimensional landmarks of the skull and the TMJ on CT-based segmentations and compared (1) the variation between domestic dog and wolf TMJs (via principal component analysis) and (2) the pattern of covariation of skull size, flexion and rostrum length with TMJ shape (via regression of centroid size on shape and partial least squares analyses). We show that the TMJ in domestic dogs is significantly more diverse than in wolves: its shape covaries significantly with skull size, flexion and rostrum proportions in patterns which resemble those observed in primates. Similar patterns in canids, which are carnivorous, and primates, which are mostly frugivorous imply the existence of basic TMJ integration patterns which are independent of dietary adaptations. However, only limited amounts of TMJ variation in dogs can be explained by simple covariation with overall skull geometry. This implies that the final TMJ shape is gained partially independently of the rest of the skull.


Assuntos
Cefalometria/métodos , Cães/anatomia & histologia , Modelos Anatômicos , Crânio/anatomia & histologia , Articulação Temporomandibular/anatomia & histologia , Lobos/anatomia & histologia , Pontos de Referência Anatômicos/anatomia & histologia , Animais , Feminino , Masculino , Especificidade da Espécie , Estatística como Assunto
17.
Zoology (Jena) ; 125: 1-9, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28823648

RESUMO

The skull shape variation in domestic dogs exceeds that of grey wolves by far. The artificial selection of dogs has even led to breeds with mismatching upper and lower jaws and maloccluded teeth. For that reason, it has been advocated that their skulls (including the teeth) can be divided into more or less independent modules on the basis of genetics, development or function. In this study, we investigated whether the large diversity of dog skulls and the frequent occurrence of orofacial disproportions can be explained by a lower integration strength between the modules of the skull and by deviations in their covariation pattern when compared to wolves. For that purpose, we employed geometric morphometric methods on the basis of 99 3D-landmarks representing the cranium (subdivided into rostrum and braincase), the mandible (subdivided into ramus and corpus), and the upper and lower tooth rows. These were taken from CT images of 196 dog and wolf skulls. First, we calculated the shape disparity of the mandible and the cranium in dogs and wolves. Then we tested whether the integration strength (measured by RV coefficient) and the covariation pattern (as analysed by partial least squares analysis) of the modules subordinate to the cranium and the mandible can explain differing disparity results. We show, contrary to our expectations, that the higher skull shape diversity in dogs is not explained by less integrated skull modules. Also, the pattern of their covariation in the dog skull can be traced back to similar patterns in the wolf. This shows that existing differences between wolves and dogs are at the utmost a matter of degree and not absolute.


Assuntos
Cães/anatomia & histologia , Mandíbula/anatomia & histologia , Crânio/anatomia & histologia , Lobos/anatomia & histologia , Animais , Evolução Biológica , Feminino , Masculino , Especificidade da Espécie , Dente/anatomia & histologia
18.
Sci Rep ; 7(1): 5459, 2017 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-28710361

RESUMO

Hairless dog breeds show a form of ectodermal dysplasia characterised by a lack of hair and abnormal tooth morphology. This has been attributed to a semi-dominant 7-base-pair duplication in the first exon of the forkhead box I3 gene (FOXI3) shared by all three breeds. Here, we identified this FOXI3 variant in a historical museum sample of pedigreed hairless dog skulls by using ancient DNA extraction and present the associated dental phenotype. Unlike in the coated wild type dogs, the hairless dogs were characterised in both the mandibular and maxillary dentition by a loss of the permanent canines, premolars and to some extent incisors. In addition, the deciduous fourth premolars and permanent first and second molars consistently lacked the distal and lingual cusps; this resulted in only a single enlarged cusp in the basin-like heel (talonid in lower molars, talon in upper molars). This molar phenotype is also found among several living and fossil carnivorans and the extinct order Creodonta in which it is associated with hypercarnivory. We therefore suggest that FOXI3 may generally be involved in dental (cusp) development within and across mammalian lineages including the hominids which are known to exhibit marked variability in the presence of lingual cusps.


Assuntos
Dente Pré-Molar/anatomia & histologia , Dente Canino/anatomia & histologia , Éxons , Fatores de Transcrição Forkhead/genética , Incisivo/anatomia & histologia , Dente Molar/anatomia & histologia , Animais , Dente Pré-Molar/diagnóstico por imagem , Dente Canino/diagnóstico por imagem , Dentição Permanente , Cães , Feminino , Fósseis , Expressão Gênica , Cabelo/anormalidades , Incisivo/diagnóstico por imagem , Masculino , Mandíbula/anatomia & histologia , Mandíbula/diagnóstico por imagem , Maxila/anatomia & histologia , Maxila/diagnóstico por imagem , Dente Molar/diagnóstico por imagem , Mutagênese Insercional , Fenótipo , Tomografia Computadorizada por Raios X , Dente Decíduo/anatomia & histologia , Dente Decíduo/diagnóstico por imagem
19.
Am J Vet Res ; 78(7): 804-817, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28650238

RESUMO

OBJECTIVE To perform 3-D inverse dynamics analysis of the entire forelimb of healthy dogs during a walk and trot. ANIMALS 5 healthy adult Beagles. PROCEDURES The left forelimb of each dog was instrumented with 19 anatomic markers. X-ray fluoroscopy was used to optimize marker positions and perform scientific rotoscoping for 1 dog. Inverse dynamics were computed for each dog during a walk and trot on the basis of data obtained from an infrared motion-capture system and instrumented quad-band treadmill. Morphometric data were obtained from a virtual reconstruction of the left forelimb generated from a CT scan of the same dog that underwent scientific rotoscoping. RESULTS Segmental angles, torque, and power patterns were described for the scapula, humerus, ulna, and carpus segments in body frame. For the scapula and humerus, the kinematics and dynamics determined from fluoroscopy-based data varied substantially from those determined from the marker-based data. The dominant action of scapular rotation for forelimb kinematics was confirmed. Directional changes in the torque and power patterns for each segment were fairly consistent between the 2 gaits, but the amplitude of those changes was often greater at a trot than at a walk. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that control of the forelimb joints of dogs is similar for both a walk and trot. Rotation of the forelimb around its longitudinal axis and motion of the scapula should be reconsidered in the evaluation of musculoskeletal diseases, especially before and after treatment or rehabilitation.


Assuntos
Cães/fisiologia , Marcha , Caminhada , Animais , Fenômenos Biomecânicos , Teste de Esforço/veterinária , Membro Anterior , Masculino
20.
J Anat ; 231(1): 12-22, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28449202

RESUMO

Owls are known for their outstanding neck mobility: these birds can rotate their heads more than 270°. The anatomical basis of this extraordinary neck rotation ability is not well understood. We used X-ray fluoroscopy of living owls as well as forced neck rotations in dead specimens and computer tomographic (CT) reconstructions to study how the individual cervical joints contribute to head rotation in barn owls (Tyto furcata pratincola). The X-ray data showed the natural posture of the neck, and the reconstructions of the CT-scans provided the shapes of the individual vertebrae. Joint mobility was analyzed in a spherical coordinate system. The rotational capability was described as rotation about the yaw and roll axes. The analyses suggest a functional division of the cervical spine into several regions. Most importantly, an upper region shows high rolling and yawing capabilities. The mobility of the lower, more horizontally oriented joints of the cervical spine is restricted mainly to the roll axis. These rolling movements lead to lateral bending, effectively resulting in a side shift of the head compared with the trunk during large rotations. The joints in the middle of the cervical spine proved to contribute less to head rotation. The analysis of joint mobility demonstrated how owls might maximize horizontal head rotation by a specific and variable combination of yawing and rolling in functionally diverse regions of the neck.


Assuntos
Vértebras Cervicais/fisiologia , Músculos do Pescoço/fisiologia , Estrigiformes/fisiologia , Animais , Vértebras Cervicais/diagnóstico por imagem , Músculos do Pescoço/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...